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Abstract. The T1u and T1g levels of C−60 in cubic symmetry are both susceptible to Jahn–Teller
interaction due to the twofold degenerateεg and threefold degenerateτ2g vibrations. In addition
to this the two levels are admixed under threefold degenerate odd vibrations ofτ1u type. An
analysis of this problem has shown the possibility of coexistence of two types of site, one having
a trigonal type of ground state and the other of orthorhombic type. The ground vibronic T1u

levels at the two sites are capable of providing identical broad ESR signals. The sharp line in
the spectra, known as a narrow spike, originates from the excited vibronic A2u level, available
only at sites with a trigonal type of ground state. The ground states of the similar vibronic
problem of C−60 in icosahedral symmetry are of trigonal type resulting in a vibronic ground T1u

and an excited A2u level (symmetry group Ih). Hence an isolated C−60, i.e. without alkali ion
ligands, is also capable of providing both broad and sharp ESR signals.

1. Introduction

Electron spin resonance spectra of the C−
60 ion [1–4] consist of a broad signal withg-value

slightly less than two and a superimposed narrow spike as a sharp signal with spin only
g-valuegs = 2.0023. The assignment of the spike is not clear. A number of possibilities
such as the low lying excited2A1 state of C−60 [2], ion-paired C−60 [4] and C2−

60 ion are
suggested as sources of this signal.

Recently Chenet al [1] have suggested that the narrow signal originates from those C−
60

ions which are less affected by surrounding alkali ion ligands, while those C−
60 which are

perturbed by surrounding alkali ions are responsible for the broad signal. Since AC60 forms
an NaCl structure [5–8] every C−60 ion in AC60 is in a cubic surrounding of six alkali (A)
ion ligands. Therefore the suggestion of Chenet al [1] is explored here by extending the
earlier study, of vibronic interaction in icosahedral symmetry for an isolated C−

60 ion [9] to
the vibronic interaction in cubic symmetry pertaining to a C−60 ion with surrounding ligands.
The ground T1u state and the close by T1g state of C−60 are both susceptible to Jahn–Teller
(JT) interaction due to the hg mode of an icosahedral symmetry and also the two states are
admixed under an odd parity vibration of theτ1u mode [9]. In cubic symmetry the hg mode
is split into τ2g andεg modes while theτ1u mode remains unsplit. Thus the present paper
is a study of the(T1u + T1g)⊗ (τ2g + εg + τ1u) vibronic problem in cubic symmetry.

2. Vibronic Hamiltonian

The vibronic Hamiltonian corresponding to(T1u+T1g)⊗(τ2g+εg+τ1u) interaction in cubic
symmetry can be written directly from the Hamiltonian for the(T1u + T1g) ⊗ (hg + τ1u)
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interaction in icosahedral symmetry given earlier [9] by introducing the following two
changes and a correction [10]. (i) Instead of a single frequency of hg mode, two frequencies
ωε andωτ for εg andτ2g modes are involved. (ii) The coupling parametersKu andKg in
diagonal terms are replaced byKεu andKεg respectively and in nondiagonal terms byKτu
andKτg respectively. (iii) The vibronic matrix elements corresponding to theτ1u mode can
be written as

〈Xu|Vy |Zg〉 = 〈Yu|Vz|Xg〉 = 〈Zu|Vx |Yg〉 = a〈Yu|Vx |Zg〉 = a〈Zu|Vy |Xg〉 = a〈Xu|Vz|Yg〉
(1)

where Vi is the potential associated with the normal coordinatesQi of the τ1u mode.
a = −1 [10], while in [9] a wrong value ofa = 1 is used. Despite the above changes and
the correction the six-dimensional Hamiltonian is still reducible to two three-dimensional
onesH1 andH−1, in the vector space{|Xλ〉, |Yλ〉, |Zλ〉}, where

|Aλ〉 = 1

2
[(1+ λG)|Au〉 + (1− λG)|Ag〉 (2)

λ = 1 or−1, and

G = exp[iπ(a+x ax + a+y ay + a+z az)].
HereAu refers to orbitals of the T1u state, Ag to those of the T1g state anda+x (ax) etc are
phonon operators of theτ1u mode.

Hλ = [ωε(a
+
θ aθ + a+ε aε + 1)+ ωτ (a+ξ aξ + a+η aη + a+ζ aζ + 3

2)

+ω′(a+x ax + a+y ay + a+z az + 3
2)+ 1

21(1− λG)]I + Vλ (3)

Vλ =


1
2(K+ε + λK−εG)(−Qθ +

√
3Qε)

√
3

2 (K+τ + λK−τG)Qζ −K ′GQz
√

3
2 (K+τ + λK−τG)Qζ +K ′GQz

1
2(K+ε + λK−εG)(−Qθ +

√
3Qε)

√
3

2 (K+τ + λK−τG)Qη −K ′GQy

√
3

2 (K+τ + λK−τG)Qξ +K ′GQx
√

3
2 (K+τ + λK−τG)Qη +K ′GQy
√

3
2 (K+τ + λK−τG)Qξ −K ′GQx

(K+ε + λK−εG)Qθ


K±α = 1

2(Kαu ±Kαg) Qi = 1√
2
(a+i + ai).

We restrict further discussion to the lower branchH1 only. Because of the correction
in (1) the present Hamiltonian differs from the one used earlier [9] in two respects. (i) It
involvesG in the product form withQx ,Qy andQz and (ii), with respect to the involvement
of GQi (i = x, y, z), it is an antisymmetric matrix operator. This antisymmetry necessitates
the use of a slightly different unitary transformation matrix than is usually used in an infinite
coupling model to separate out the zero-phonon part of the Hamiltonian. The transformation
matrix used here is given by

S =
 T U−1

y UzUx 0 0
0 T U−1

z UxUy 0
0 0 T U−1

x UyUz

 (4)

where

T = exp
∑
i

fi√
2
(a+i − ai)

i = ε, θ, ξ, η, ζ
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and

Ui = exp

[
fi√

2
(a+i − ai)

]
i = X, Y,Z
SH1S

−1 = H0
1 +H′1. (5)

H′1 involves coupling to the excited phonon states only and hence is not important for
the ground state of the system in an infinite coupling model [11]. The form of the
zero-phonon HamiltonianH0

1 is the same as given earlier [9] except for the facts that
(i) now two frequenciesωε andωτ and two coupling parameters,K1ε in the diagonal and
K1τ in the nondiagonal, are involved and (ii) the variational parametergζ is redefined as
gζ = fζ + 2K ′√

3K1τ
fz e−f

2
x instead ofgζ = fζ + 2K ′√

3K1τ
fz. There are similar changes forgξ

and gη also. However the effect on the ground energy of the parametersfx , fy and fz,
reflecting the mixing effect of the excited T1g level with T1u, is expected to be much smaller
than the effect of other variational parameters. Therefore to analyseH0

1 by the method of
Opik and Pryce [12] the terms higher than quadratic in polynomials offx , fy and fz, in
the expressions withK ′ as coefficient, are neglected. With this simplification the present
results given in table 1 are similar to those found earlier [9]. The ground state energies are
given by

Etetr = −K
2
1ε

2ωε
+ 1

2ω
′(f 2+ 3)+ 1

21(1− e−f
2
)+ ωε + 3

2ωτ (6)

Etrig = −K
2
1τ

2ωτ
− 2|K ′|f√

3
+ 1

2ω
′(f 2+ 3)+ 1

21(1− e−f
2
)+ ωε + 3

2ωτ (7)

Table 1. The values of variational parameters for various stationary ground states in the infinite
coupling model. Here

fτ = K1τ

ωτ
+ 2|K ′|f√

3K1τ
fo =

√
3K1τ

2ωτ
+ 2|K ′|f√

3K1τ
.

Nature of stationary ground state Values of parameters

Tetragonal fξ = fη = fζ = fx = fy = fz = 0
(a) fθ = K1ε

ωε
fε = 0

(b) fθ = −K1ε
2ωε

fε =
√

3K1ε
2ωε

(c) fθ = −K1ε
2ωε

fε = −
√

3K1ε
2ωε

Trigonal fθ = fε = 0
(a)−gξ = −gη = gζ = 1√

3
fτ −fx = −fy = fz = 1√

3
f

(b) −gξ = gη = −gζ = 1√
3
fτ −fx = fy = −fz = 1√

3
f

(c) gξ = −gη = −gζ = 1√
3
fτ fx = −fy = −fz = 1√

3
f

(d) gξ = gη = gζ = 1√
3
fτ fx = fy = fz = 1√

3
f

Orthorhombic (a)fθ = −K1ε
2ωε

fε = 0 gζ = ±fo
fz = ±f gξ = gη = fx = fy = 0

(b) fθ = K1ε
4ωε

fε = −
√

3K1ε
4ωε

gξ = ±fo
fx = ±f gη = gζ = fy = fz = 0

(c) fθ = K1ε
4ωε

fε =
√

3K1ε
4ωε

gη = ±fo
fy = ±f gζ = gξ = fz = fx = 0
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Eorth = −K
2
1ε

8ωε
− 3K2

1τ

8ωτ
− |K ′|f + 1

2ω
′(f 2+ 3)+ 1

21(1− e−f
2
)+ ωε + 3

2ωτ . (8)

The parameterf is decided by the condition of extremization of the respective energies.
It is obvious from (6) thatEtetr extremizes withf atf = 0, indicating zero mixing between
T1u and T1g levels, which is contradictory to the result of infrared reflectivity measurements
[13, 14]. This rules out the possibility of a tetragonal type of ground state. In section 3 the
possibility of a trigonal or orthorhombic type of ground state in cubic symmetry is discussed
in the light of ESR results. The ground state energies for an isolated C−

60 are obtained by
substitutingωε = ωτ = ω andK1ε = K1τ = K1 in (7) and (8). Hereω is frequency and
K1 the effective coupling parameter for the hg mode in icosahedral symmetry. In this case
since the linear term inf is larger in the expression forEtrig compared to that inEorth, the
ground state is of trigonal type. The forthcoming section 3.1 about the inversion splitting
and ESR behaviour of the trigonal type ground state in cubic symmetry is applicable to C−

60
in icosahedral symmetry also, but then the level notations T1u and A2u will refer to the Ih
point group and not to cubic symmetry.

3. Inverse splitting and ESR behaviour

3.1. Trigonal type ground state

The ground vibronic wavefunction in this case is written in the form

exp(Aξ + Aη + Aζ ) 1

fτ
(gξ |X1〉 + gη|Y1〉 + gζ |Z1〉)|0〉 (9)

where|0〉 = |0ξ0η0ζ 〉 is the zero phonon state and

Ai = exp

[
− gi√

2
(a+i − ai)

]
.

The vibronic wavefunctions (9) are denoted as|a〉, |b〉, |c〉 and|d〉 depending upon the four
possible sets of values ofgξ , gη and gζ given in table 1. Under inversion splitting this
fourfold degenerate vibronic level is split into a singlet A2u with wavefunctions

|A2〉 = 1

2
√

1− Sτ
[|a〉 + |b〉 + |c〉 + |d〉] (10)

and a triplet T1u, whosez-component is written as [11]

T1z = 1

2
√

1+ 1
3Sτ

[−|a〉 + |b〉 + |c〉 − |d〉] (11)

where

Sτ = exp

[
− 2

3

(
K1τ

ωτ
+ 2|K ′|f√

3K1τ

)2]
. (12)

The x- and y-components of T1u are written fromT1z by cyclic permutation ofa, b
andc.

The inversion splitting, calculated by the method of Dunn and Bates [11], is given by

EA − ET = 8Sτωτ
(3− 2Sτ − S2

τ )

(
K1τ

ωτ
+ 2|K ′|f√

3K1τ

)2

. (13)

Obviously the vibronic T1u level is lowest; this is split under spin–orbit interaction into a
spin orbital vibronic quartet08 and a doublet06 with energies1

2αλκτ and−αλκτ . Here



(T1u + T1g)⊗ (εg + τ2g + τ1u) in C−60 7167

α = 2.5 [16, 17] is the orbital Land́e splitting factor [18] of the T1u level,λ is the spin–orbit
coupling coefficient andκτ is the Ham reduction factor given by

κτ = 4Sτ
3+ Sτ . (14)

The excited vibronic singlet A2u can be the source of a narrow spike with spin-only
g-value in the ESR signal provided that its separation from the ground state is within the
temperature range of the observation of the signal. An adequate value of the separation
EA − ET ≈ 270 cm−1 is arrived at from (12) and (13) forSτ = 0.05 and assuming
ωτ ≈ 437 cm−1, approximately equal to the Hg mode frequency in Ih symmetry with
maximum JT coupling [19]. This low value ofSτ implies a very low value ofκτ = 0.066,
which amounts to an almost complete quenching of the orbital moment and spin–orbit
interaction of the vibronic T1u level. This level will provide a broad magnetic field dependent
ESR spectrum, since the spin–orbit interaction is comparable to magnetic field interaction,
with the main lineg-value slightly less than the spin-onlyg-value. A similar result is
obtained by Tosattiet al also [16] for C−60 in the gas phase. This situation corresponds to a
strong JT case with JT energyEJT ≈ (K2

1τ /2ωτ ) ≈ − 3
4[ωτ ln(Sτ )] ≈ 2.25ωτ .

In the limit of weak JT interaction there is only small quenching of spin–orbit interaction
and magnetic moment of the T1u level. The broad ESR signal can be assigned to the
spin–orbital vibronic doublet06 with g = 2

3

(
2ακτ − 1

2gs
)
, by suitable choice ofκτ . In this

case the inversion splitting,EA−ET , is very large. Therefore the vibronic singlet A2u is far
removed from the ground and we conclude that in the weak JT limit there is no plausible
source for the narrow signal.

3.2. Orthorhombic type ground state

The ground level in this case is a sixfold degenerate level corresponding to six possibilities
of orthorhombic types of solution (table 1). An inversion splitting removes this degeneracy
into two vibronic triplets T1u and T2u; their Z-components can be written using projection
operator methods [15] as

|T1z〉 = NT1√
2

[χzx+(|Z1〉 + |X1〉)+ χzx−(|Z1〉 − |X1〉)+ χyz+(|Y1〉 + |Z1〉)
−χyz−(|Y1〉 − |Z1〉)] (15)

|T2z〉 = NT2√
2

[χzx+(|Z1〉 + |X1〉)+ χzx−(|Z1〉 − |X1〉)− χyz+(|Y1〉 + |Z1〉)
+χyz−(|Y1〉 − |Z1〉)]. (16)

x- andy-components ofT1u andT2u are obtained from|T1z〉 and|T2z〉 by cyclic permutations
of X, Y andZ.

χxy± = exp

[
K1ε

2
√

2ωε
(a+θ − aθ )∓

fo√
2
(a+ζ − aζ )

]
|0〉

χyz± = exp

[
− K1ε

4
√

2ωε
(a+θ − aθ )+

√
3K1ε

4
√

2ωε
(a+ε − aε)∓

fo

2
(a+ξ − aξ )

]
|0〉 (17)

χyz± = exp

[
− K1ε

4
√

2ωε
(a+θ − aθ )−

3K1ε

4
√

2
(a+ε − aε)∓

fo√
2
(a+η − aη)

]
|0〉.

Here

fo =
√

3K1τ

2ωτ
+ 2|K ′|f√

3K1τ

(18)
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and |0〉 = |0θ , 0ε, 0ξ , 0η, 0ζ 〉 is the zero-phonon state,

NT1 =
1

2
√

1+ So
NT2 =

1

2
√

1− So
(19)

So = 〈χxy±|χyz±〉 = 〈χxy±|χyz∓〉 = exp

[
− 3K2

1ε

16ω2
ε

− 1

2

(
3K1τ

2ωτ
+ 2|K ′|f√

3K1τ

)2]
. (20)

Another overlap integralS ′o is defined as

S ′o = 〈χxy±|χxy∓〉 = exp

[
−
(

3K1τ

2ωτ
+ 2|K ′|f√

3K1τ

)2]
. (21)

The energy separation between the two triplets calculated using the method of Dunn and
Bates [15] is given by

ET2 − ET1 =
3SoK2

1ε

8(1− S2
o )ωε

. (22)

Obviously the vibronic level T1u lies lowest. The expression for the Ham reduction factor
in this case is given by

κo = 3So + S ′o
2(1+ So) . (23)

It is found from (20), (21) and (23) that for a suitable choice of values ofSo and S ′o the
values ofκo andEJT ≈ [(K2

1ε/8ωε) + (3K2
1τ /8ωτ )] are nearly equal to the corresponding

values for the trigonal type of ground state. ForSo = 0.037 andS ′o = 0.026 these values
are κo = 0.066 andEJT = 2.84ω, assumingωε ≈ ωτ = ω. This implies that there is a
possibility of coexistence of two types of site, one having a trigonal type of ground state
and the other of orthorhombic type. The two will provide identical broad ESR signals but
the sharp line in the spectra originates only from sites with trigonal type ground state.

4. Discussion

The ground state of the (T1u⊗hg) Jahn–Teller problem of C−60 in icosahedral symmetry lies
on a continuous spherical equal-energy surface [20, 21]. In previous studies [22–24] the
quadratic and bilinear couplings are used to stabilize the pentagonal D5d and trigonal D3d

types of energy minimum. In the present paper, however, the stabilization of the trigonal
type of ground state in icosahedral symmetry is the result of vibronic mixing with the T1g

level. In cubic symmetry, where a C−60 ion is under the influence of surrounding alkali ion
ligands, the analysis of(Tu − T1g) ⊗ (τ2g + εg + τ1u) vibronic interaction has shown that
there is a possibility of coexistence of both trigonal type and orthorhombic type of ground
state. Both the trigonal and orthorhombic types of ground state contribute to the broad
line in ESR spectra but the sharp line originates only from sites with the trigonal type of
ground state. In KC60(THF)x with 0 < x < 1 the C−60 ions fall into two categories [1]:
(i) the C−60 in icosahedral symmetry since they are less affected by the surrounding K+ ions,
(ii) those which are strongly perturbed by K+ ions so that their surrounding symmetry is
cubic. In KC60(THF) all the K+ ligands of the C−60 ion are equally solvated by THF and
hence the symmetry is again cubic. Thus the sites with the trigonal type of ground state are
more numerous in KC60(THF)x (0 < x < 1) samples than in KC60(THF). This explains
the experimental observation of Chenet al [1] that the sharp line is more pronounced in
KC60(THF)x (0< x < 1) samples than in KC60(THF).
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Since the symmetry of the immediate surroundings of C−
60 in solution is expected to

be the same as in solids, the broad and sharp components are expected to be observed
in ESR spectra of C−60 in solution also. Staskoet al [25] observed these components
in photochemically and electrochemically reduced fullerene anions in aqeous solutions.
Bennati et al [26] have studied the pulsed EPR of the photoexcited state of C−

60 in fluid
solution. Apart from the signal due to the triplet state, they have also observed a signal
nearg ≈ 2 from C−60 generated via electron transfer from EC4T to3C60. This line can
be identified with the broad component of the signal observed by Staskoet al [25] since
both have the same line width. Nonobservation of the narrow component of C−

60 in the
experiment of Bennatiet al [26] suggests that in this system the separation of the excited
vibronic singlet A2u is beyond the temperature range of observation. Hwanget al [27], on
the basis of their observation that on exposure to molecular oxygen the broad band signal
diminishes and a narrow signal grows, have concluded that the spike commonly observed
in C−60 is most probably due to the oxygenation of the C−60 radical. A change from an
orbital triplet to a singlet ground level, resulting from a static distortion of C−

60 radical due
to oxygenation, will definitely replace the broad signal with a narrow one, but the problem
in the ESR behaviour of the C−60 radical is that of coexistence of the narrow spike along
with the broad signal and hence the conclusion of Hwanget al [27] does not hold.

A major approximation involved in the present work is the consideration of only one
mode for each vibrational symmetry instead of the actual eightτ2g, eight εg and fourτ1u

modes. Also an actual evaluation of T1u–T1g mixing has not been possible. The conclusions
arrived at in section 2 about the nature of the ground state are mainly symmetry based. The
proposition in section 3 about a strong JT interaction is invoked to bring the vibronic A2u

within the temperature range of ESR experiments, and the low value of Ham reduction
factor follows directly from this proposition. The actual values ofEJT and κτ (κo) may
probably change but the basic results, concerning the nature of the ground level and the
low value of the Ham reduction factor etc, should remain valid even in a more realistic
multimode treatment.
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